Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Org Biomol Chem ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597668

RESUMO

A water mediated three-component reaction of isatin, 4-aminocoumarin, and 1,3-cyclodicarbonyl compounds is reported for the synthesis of spiro[chromeno[4,3-b]cyclopenta[e]pyridine-7,3'-indoline]trione and the spiro[chromeno[4,3-b]quinoline 7,3'-indoline]trione. Up to 27 different spirooxindole derivatives were synthesized by this method. The bioactivity of these spirooxindole derivatives was evaluated and they were found to show antifungal activity against Cercospora arachidicola, Physalospora piricola, Rhizoctonia cerealis, and Fusarium moniliforme.

2.
Food Chem X ; 22: 101332, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38586225

RESUMO

Coix seed (CS) has high nutritional value, but the deep processing of CS is relatively limited. Sprouting can significantly improve nutritional value, laying the foundation for efficient consumption or further processing. The optimal conditions for the germination of CS are a soaking temperature of 36 °C for 10 h and a germination temperature of 29 °C for 24 h. Under these conditions, the final germination rate of CS reached 90%. Additionally, the content of γ-aminobutyric acid was 21.205 mg/100 g; soluble protein, free amino acids, γ-aminobutyric acid, and other essential substances increased in CS. Especially after germination, the γ-aminobutyric acid (GABA) content increased by 7.8 times compared with the GABA content of ungerminated CS. Therefore, the nutritional value and flavor of germinated CS are better than those of ungerminated ones, which establishs a solid foundation for its application in developing various products such as compound health drinks, coix yogurt, and others.

3.
Front Microbiol ; 15: 1367116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533337

RESUMO

The quality of raw camel milk is affected by its bacterial composition and diversity. However, few studies have investigated the bacterial composition and diversity of raw camel milk. In this study, we obtained 20 samples of camel milk during spring and summer in Urumqi and Hami, Xinjiang, China. Single-molecule real-time sequencing technology was used to analyze the bacterial community composition. The results revealed that there were significant seasonal differences in the bacterial composition and diversity of camel milk. Overall, Epilithonimonas was the most abundant bacterial genus in our samples. Through the annotated genes inferred by PICRUSt2 were mapped against KEGG database. Non-parametric analysis of the bacterial community prediction function revealed a strong bacterial interdependence with metabolic pathways (81.83%). There were clear regional and seasonal differences in level 3 metabolic pathways such as fat, vitamins, and amino acids in camel milk. In addition, we identified lactic acid bacteria in camel milk with antibacterial and anti-tumor activities. Our findings revealed that camel milk from Xinjiang had serious risk of contamination by psychrophilic and pathogenic bacteria. Our research established a crucial theoretical foundation for ensuring the quality and safety of camel milk, thereby contributing significantly to the robust growth of China's camel milk industry.

5.
Molecules ; 29(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38398648

RESUMO

To explore green gold leaching reagents, a series of imidazolium cyanate ionic liquids (ILs), 1-ethyl-3-methyl-imidazolium cyanate ([C2MIM][OCN]), 1-propyl-3-methyl-imidazolium cyanate ([C3MIM][OCN]) and 1-butyl-3-methyl-imidazolcyanate ([C4MIM][OCN]) were synthesized and characterized by Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric (TG) analysis. In this research, the imidazolium cyanates were utilized as a solute, which not only decreased the usage of ILs but also increased their gold dissolution capability. The gold dissolution performances of three imidazolium cyanates were characterized by dynamic leaching test and Scanning Electron Microscopy (SEM). The results show that the all three imidazolium cyanates had a gold dissolution ability, and the shorter the carbon chain on the imidazole ring in imidazolium cyanate, the faster the gold dissolution rate. The gold dissolution performance of [C2MIM][OCN] was the best, and the weight loss of gold leaf was 2.9 mg/cm2 at 40 °C after 120 h dissolution in [C2MIM][OCN] mixed with 10 wt. % water. Besides this, the gold dissolution rate increased with the increase in the concentration of imidazolium cyanates as well as the reaction temperature. The gold dissolution performances of imidazolium cyanates in different solvents including water, acetonitrile, dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) were also investigated, and the weaker the polarity of the solvent, the more conducive it was to the gold dissolution reaction. The mechanism of gold dissolution by imidazolium cyanates was investigated through NMR spectroscopy and Electrospray Ionization Mass Spectrometry (ESI-MS). It was inferred that during the process of gold dissolution, Au was oxidized to Au+ and the imidazolium cations were deprotonated to form N-heterocyclic carbenes, which coordinated with gold to form gold complexes and achieve gold dissolution.

6.
Mol Ther ; 32(4): 1110-1124, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38341612

RESUMO

Whether and how tumor intrinsic signature determines macrophage-elicited metastasis remain elusive. Here, we show, in detailed studies of data regarding 7,477 patients of 20 types of human cancers, that only 13.8% ± 2.6%/27.9% ± 3.03% of patients with high macrophage infiltration index exhibit early recurrence/vascular invasion. In parallel, although macrophages enhance the motility of various hepatoma cells, their enhancement intensity is significantly heterogeneous. We identify that the expression of malignant Dicer, a ribonuclease that cleaves miRNA precursors into mature miRNAs, determines macrophage-elicited metastasis. Mechanistically, the downregulation of Dicer in cancer cells leads to defects in miRNome targeting NF-κB signaling, which in turn enhances the ability of cancer cells to respond to macrophage-related inflammatory signals and ultimately promotes metastasis. Importantly, transporting miR-26b-5p, the most potential miRNA targeting NF-κB signaling in hepatocellular carcinoma, can effectively reverse macrophage-elicited metastasis of hepatoma in vivo. Our results provide insights into the crosstalk between Dicer-elicited miRNome and cancer immune microenvironments and suggest that strategies to remodel malignant cell miRNome may overcome pro-tumorigenic activities of inflammatory cells.


Assuntos
Carcinoma Hepatocelular , MicroRNAs , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Carcinoma Hepatocelular/patologia , Transdução de Sinais/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Macrófagos/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral/genética
7.
Aging (Albany NY) ; 16(1): 701-713, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38175715

RESUMO

Previous studies have indicated a potential connection between plasma levels of Dickkopf-1 (DKK1) and platelet-derived growth factor subunit-B (PDGF-B) with the development of atherosclerosis. However, the causal relationship between DKK1, PDGF-B, and the risk of acute myocardial infarction (AMI) is yet to be established. To address this research gap, we conducted Mendelian randomization (MR) and mediation analyses to investigate the potential mediating role of PDGF-B in the association between DKK1 and AMI risk. Summary statistics for DKK1 (n = 3,301) and PDGF-B (n = 21,758) were obtained from the GWAS meta-analyses conducted by Sun et al. and Folkersen et al., respectively. Data on AMI cases (n = 3,927) and controls (n = 333,272) were retrieved from the UK Biobank study. Our findings revealed that genetic predisposition to DKK1 (odds ratio [OR]: 1.00208; 95% confidence interval [CI]: 1.00056-1.00361; P = 0.0072) and PDGF-B (OR: 1.00358; 95% CI: 1.00136-1.00581; P = 0.0015) was associated with an increased risk of AMI. Additionally, genetic predisposition to DKK1 (OR: 1.38389; 95% CI: 1.07066-1.78875; P = 0.0131) was linked to higher PDGF-B levels. Furthermore, our MR mediation analysis revealed that PDGF-B partially mediated the association between DKK1 and AMI risk, with 55.8% of the effect of genetically predicted DKK1 being mediated through genetically predicted PDGF-B. These findings suggest that genetic predisposition to DKK1 is positively correlated with the risk of AMI, and that PDGF-B partially mediates this association. Therefore, DKK1 and PDGF-B may serve as promising targets for the prevention and treatment of AMI.


Assuntos
Aterosclerose , Infarto do Miocárdio , Humanos , Análise da Randomização Mendeliana , Infarto do Miocárdio/genética , Predisposição Genética para Doença , Proteínas Proto-Oncogênicas c-sis , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
8.
Gastroenterology ; 166(3): 466-482, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38065340

RESUMO

BACKGROUND & AIMS: Although immunotherapy shows substantial advancement in colorectal cancer (CRC) with microsatellite instability high, it has limited efficacy for CRC with microsatellite stability (MSS). Identifying combinations that reverse immune suppression and prime MSS tumors for current immunotherapy approaches remains an urgent need. METHODS: An in vitro CRISPR screen was performed using coculture models of primary tumor cells and autologous immune cells from MSS CRC patients to identify epigenetic targets that could enhance immunotherapy efficacy in MSS tumors. RESULTS: We revealed EHMT2, a histone methyltransferase, as a potential target for MSS CRC. EHMT2 inhibition transformed the immunosuppressive microenvironment of MSS tumors into an immunomodulatory one by altering cytokine expression, leading to T-cell-mediated cytotoxicity activation and improved responsiveness to anti-PD1 treatment. We observed galectin-7 up-regulation upon EHMT2 inhibition, which converted a "cold" MSS tumor environment into a T-cell-inflamed one. Mechanistically, CHD4 repressed galectin-7 expression by recruiting EHMT2 to form a cotranscriptional silencing complex. Galectin-7 administration enhanced anti-PD1 efficacy in MSS CRC, serving as a potent adjunct cytokine therapy. CONCLUSIONS: Our findings suggest that targeting the EHMT2/galectin-7 axis could provide a novel combination strategy for immunotherapy in MSS CRC.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Imunoterapia , Citocinas , Galectinas/genética , Repetições de Microssatélites , Instabilidade de Microssatélites , Microambiente Tumoral , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase
9.
Dalton Trans ; 52(46): 17477-17484, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37953727

RESUMO

Interlayer magnetic couplings of low-dimensional magnets have significantly dominated magnetic behavior through skillful regulation of interlayer interacting forces. To identify interaction-force-regulated interlayer magnetic communications, two air-stable Co(II)-based coordination polymers (CPs), a well-isolated layered structure with approximately 12.6 Å interlayer separation and a carboxylate-extended three-dimensional framework with an inter-ribbon distance of 5.8 Å, have been solvothermally fabricated by varying polycarboxylate mediators in a ternary CoII-tetrazolate-carboxylate system. The layered CP with antiparallel-arranged {Co2(COO)2}n chains interconnected only via cyclic tetrazolyl linkages behaves as a spin-canted antiferromagnet with a Néel temperature of 2.6 K, due to strong intralayer antiferromagnetic couplings and negligible interlayer magnetic interactions. In contrast, the compact three-dimensional framework with corner-sharing Δ-ribbons tightly aggregated through µ2-η1:η1-COO- is a field-induced metamagnet from a canted antiferromagnet to a weak ferromagnet with a small critical field of Hc = 90 Oe. Apparently, these interesting magnetic responses reveal the importance of an interacting force from the magnetic subunits for the magnetic behavior of the molecular magnet, greatly enriching the magnetostructural correlations of transition-metal-based molecular magnets.

10.
Sci Adv ; 9(45): eadi6725, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939192

RESUMO

Very high tropical alpine ice cores provide a distinct paleoclimate record for climate changes in the middle and upper troposphere. However, the climatic interpretation of a key proxy, the stable water oxygen isotopic ratio in ice cores (δ18Oice), remains an outstanding problem. Here, combining proxy records with climate models, modern satellite measurements, and radiative-convective equilibrium theory, we show that the tropical δ18Oice is an indicator of the temperature of the middle and upper troposphere, with a glacial cooling of -7.35° ± 1.1°C (66% CI). Moreover, it severs as a "Goldilocks-type" indicator of global mean surface temperature change, providing the first estimate of glacial stage cooling that is independent of marine proxies as -5.9° ± 1.2°C. Combined with all estimations available gives the maximum likelihood estimate of glacial cooling as -5.85° ± 0.51°C.

11.
Philos Trans A Math Phys Eng Sci ; 381(2262): 20220190, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37866385

RESUMO

The Atlantic Meridional Overturning Circulation (AMOC) and the associated water masses have changed dramatically during the glacial-interglacial cycle. Here, I review some recent progress in the modelling of the AMOC and water masses since the Last Glacial Maximum and discuss the relevance of these past AMOC studies to the present and future AMOC study. Recent studies suggested that Atlantic water masses were constrained by carbon isotopes (δ13C) and neodymium isotopes (εNd), while the strength of the AMOC better was constrained by protactinium/thorium ratio (231Pa/230Th) and the spatial gradient of calcite oxygen isotopes (δ18Oc). In spite of the shallower AMOC at the glacial period, its intensity did not differ substantially from the present because of the cancellation of opposite responses to the rising CO2 and the retreating ice sheet. This article is part of a discussion meeting issue 'Atlantic overturning: new observations and challenges'.

12.
Aging (Albany NY) ; 15(18): 9797-9808, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37742224

RESUMO

Epidemiological investigations have indicated a correlation between elevated plasma levels of Dickkopf-related protein 1 (DKK1) and the presence of atherosclerosis. However, the exact causal relationship of DKK1 with the development of coronary artery disease (CAD) and ischemic stroke (IS) remains unclear. To address this gap, our study aimed to explore their causal association using a two-sample Mendelian randomization (MR) approach. We obtained summary statistics from genome-wide association studies (GWAS) meta-analyses conducted by Folkersen et al. and Nikpay et al., which included data from 21,758 individuals for DKK1 and 42,096 cases of CAD. Additionally, we obtained data from the FinnGen biobank analysis round 5, which included 10,551 cases of IS. Eight MR methods were employed to estimate causal effects and detect directional pleiotropy. Our findings demonstrated that genetic liability to DKK1 was associated with increased risks of CAD (odds ratio [OR]: 1.087; 95% confidence interval [CI]: 1.024-1.154; P = 0.006) and IS (OR: 1.096; 95% CI: 1.004-1.195; P = 0.039). These results establish a causal link between genetic liability to DKK1 and elevated risks of CAD and IS. Consequently, DKK1 may represent a promising therapeutic target for the prevention and treatment of CAD and IS.

13.
Gut ; 72(12): 2307-2320, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37507218

RESUMO

OBJECTIVE: Checkpoint immunotherapy unleashes T-cell control of tumours but is suppressed by immunosuppressive myeloid cells. The transmembrane protein MS4A4A is selectively highly expressed in tumour-associated macrophages (TAMs). Here, we aimed to reveal the role of MS4A4A+ TAMs in regulating the immune escape of tumour cells and to develop novel therapeutic strategies targeting TAMs to enhance the efficacy of immune checkpoint inhibitor (ICI) in colorectal cancer. DESIGN: The inhibitory effect of MS4A4A blockade alone or combined with ICI treatment on tumour growth was assessed using murine subcutaneous tumour or orthotopic transplanted models. The effect of MS4A4A blockade on the tumour immune microenvironment was assessed by flow cytometry and mass cytometry. RNA sequencing and western blot analysis were used to further explore the molecular mechanism by which MS4A4A promoted macrophages M2 polarisation. RESULTS: MS4A4A is selectively expressed by TAMs in different types of tumours, and was associated with adverse clinical outcome in patients with cancer. In vivo inhibition of MS4A4A and anti-MS4A4A monoclonal antibody treatment both curb tumour growth and improve the effect of ICI therapy. MS4A4A blockade treatment reshaped the tumour immune microenvironment, resulting in reducing the infiltration of M2-TAMs and exhausted T cells, and increasing the infiltration of effector CD8+ T cells. Anti-MS4A4A plus anti-programmed cell death protein 1 (PD-1) therapy remained effective in large, treatment-resistant tumours and could induce complete regression when further combined with radiotherapy. Mechanistically, MS4A4A promoted M2 polarisation of macrophages by activating PI3K/AKT pathway and JAK/STAT6 pathway. CONCLUSION: Targeting MS4A4A could enhance the ICI efficacy and represent a new anticancer immunotherapy.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Macrófagos , Microambiente Tumoral , Proteínas de Membrana/metabolismo
14.
Sci Rep ; 13(1): 5904, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041267

RESUMO

The role of RNA N6-methyladenosine (m6A) modification in the regulation of the immune microenvironment in ischaemic cardiomyopathy (ICM) remains largely unclear. This study first identified differential m6A regulators between ICM and healthy samples, and then systematically evaluated the effects of m6A modification on the characteristics of the immune microenvironment in ICM, including the infiltration of immune cells, the human leukocyte antigen (HLA) gene, and HALLMARKS pathways. A total of seven key m6A regulators, including WTAP, ZCH3H13, YTHDC1, FMR1, FTO, RBM15 and YTHDF3, were identified using a random forest classifier. A diagnostic nomogram based on these seven key m6A regulators could effectively distinguish patients with ICM from healthy subjects. We further identified two distinct m6A modification patterns (m6A cluster-A and m6A cluster-B) that are mediated by these seven regulators. Meanwhile, we also noted that one m6A regulator, WTAP, was gradually upregulated, while the others were gradually downregulated in the m6A cluster-A vs. m6A cluster-B vs. healthy subjects. In addition, we observed that the degree of infiltration of the activated dendritic cells, macrophages, natural killer (NK) T cells, and type-17 T helper (Th17) cells gradually increased in m6A cluster-A vs. m6A cluster-B vs. healthy subjects. Furthermore, m6A regulators, including FTO, YTHDC1, YTHDF3, FMR1, ZC3H13, and RBM15 were significantly negatively correlated with the above-mentioned immune cells. Additionally, several differential HLA genes and HALLMARKS signalling pathways between the m6A cluster-A and m6A cluster-B groups were also identified. These results suggest that m6A modification plays a key role in the complexity and diversity of the immune microenvironment in ICM, and seven key m6A regulators, including WTAP, ZCH3H13, YTHDC1, FMR1, FTO, RBM15, and YTHDF3, may be novel biomarkers for the accurate diagnosis of ICM. Immunotyping of patients with ICM will help to develop immunotherapy strategies with a higher level of accuracy for patients with a significant immune response.


Assuntos
Cardiomiopatias , Isquemia Miocárdica , Humanos , Adenosina , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Proteína do X Frágil de Retardo Mental , Metilação , RNA
15.
Adv Sci (Weinh) ; 10(17): e2206732, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088818

RESUMO

Skeletal muscle atrophy is a common clinical feature of many acute and chronic conditions. Circular RNAs (circRNAs) are covalently closed RNA transcripts that are involved in various physiological and pathological processes, but their role in muscle atrophy remains unknown. Global circRNA expression profiling indicated that circRNAs are involved in the pathophysiological processes of muscle atrophy. circTmeff1 is identified as a potential circRNA candidate that influences muscle atrophy. It is further identified that circTmeff1 is highly expressed in multiple types of muscle atrophy in vivo and in vitro. Moreover, the overexpression of circTmeff1 triggers muscle atrophy in vitro and in vivo, while the knockdown of circTmeff1 expression rescues muscle atrophy in vitro and in vivo. In particular, the knockdown of circTmeff1 expression partially rescues muscle mass in mice during established atrophic settings. Mechanistically, circTmeff1 directly interacts with TAR DNA-binding protein 43 (TDP-43) and promotes aggregation of TDP-43 in mitochondria, which triggers the release of mitochondrial DNA (mtDNA) into cytosol and activation of the cyclic GMP-AMP synthase (cGAS)/ stimulator of interferon genes (STING) pathway. Unexpectedly, TMEFF1-339aa is identified as a novel protein encoded by circTmeff1 that mediates its pro-atrophic effects. Collectively, the inhibition of circTmeff1 represents a novel therapeutic approach for multiple types of skeletal muscle atrophy.


Assuntos
Atrofia Muscular , RNA Circular , Camundongos , Animais , RNA Circular/genética , RNA Circular/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo
16.
Front Endocrinol (Lausanne) ; 14: 1060470, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875476

RESUMO

Objective: Sepsis is a life-threatening condition secondary to infection that evolves into a dysregulated host response and is associated with acute organ dysfunction. Sepsis-induced cardiac dysfunction is one of the most complex organ failures to characterize. This study performed comprehensive metabolomic profiling that distinguished between septic patients with and without cardiac dysfunction. Method: Plasma samples collected from 80 septic patients were analysed by untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics. Principal component analysis (PCA), partial least squares discrimination analysis (PLS-DA), and orthogonal partial least square discriminant analysis (OPLS-DA) were applied to analyse the metabolic model between septic patients with and without cardiac dysfunction. The screening criteria for potential candidate metabolites were as follows: variable importance in the projection (VIP) >1, P < 0.05, and fold change (FC) > 1.5 or < 0.7. Pathway enrichment analysis further revealed associated metabolic pathways. In addition, we constructed a subgroup metabolic analysis between the survivors and non-survivors according to 28-day mortality in the cardiac dysfunction group. Results: Two metabolite markers, kynurenic acid and gluconolactone, could distinguish the cardiac dysfunction group from the normal cardiac function group. Two metabolites, kynurenic acid and galactitol, could distinguish survivors and non-survivors in the subgroup analysis. Kynurenic acid is a common differential metabolite that could be used as a candidate for both diagnosis and prognosis for septic patients with cardiac dysfunction. The main associated pathways were amino acid metabolism, glucose metabolism and bile acid metabolism. Conclusion: Metabolomic technology could be a promising approach for identifying diagnostic and prognostic biomarkers of sepsis-induced cardiac dysfunction.


Assuntos
Ácido Cinurênico , Sepse , Humanos , Metabolômica , Cromatografia Líquida , Análise Discriminante
17.
Aging (Albany NY) ; 15(5): 1475-1495, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36863704

RESUMO

The immune molecular mechanisms involved in ischaemic cardiomyopathy (ICM) have not been fully elucidated. The current study aimed to elucidate the immune cell infiltration pattern of the ICM and identify key immune-related genes that participate in the pathologic process of the ICM. The differentially expressed genes (DEGs) were identified from two datasets (GSE42955 combined with GSE57338) and the top 8 key DEGs related to ICM were screened using random forest and used to construct the nomogram model. Moreover, the "CIBERSORT" software package was used to determine the proportion of infiltrating immune cells in the ICM. A total of 39 DEGs (18 upregulated and 21 downregulated) were identified in the current study. Four upregulated DEGs, including MNS1, FRZB, OGN, and LUM, and four downregulated DEGs, SERP1NA3, RNASE2, FCN3 and SLCO4A1, were identified by the random forest model. The nomogram constructed based on the above 8 key genes suggested a diagnostic value of up to 99% to distinguish the ICM from healthy participants. Meanwhile, most of the key DEGs presented prominent interactions with immune cell infiltrates. The RT-qPCR results suggested that the expression levels of MNS1, FRZB, OGN, LUM, SERP1NA3 and FCN3 between the ICM and control groups were consistent with the bioinformatic analysis results. These results suggested that immune cell infiltration plays a critical role in the occurrence and progression of ICM. Several key immune-related genes, including the MNS1, FRZB, OGN, LUM, SERP1NA3 and FCN3 genes, are expected to be reliable serum markers for the diagnosis of ICM and potential molecular targets for ICM immunotherapy.


Assuntos
Cardiomiopatias , Isquemia Miocárdica , Humanos , Nomogramas , Algoritmo Florestas Aleatórias , Isquemia Miocárdica/genética , Biologia Computacional , Lectinas , Peptídeos e Proteínas de Sinalização Intercelular
18.
Aging (Albany NY) ; 15(5): 1394-1411, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36863716

RESUMO

Lipid metabolism plays an essential role in the genesis and progress of acute myocardial infarction (AMI). Herein, we identified and verified latent lipid-related genes involved in AMI by bioinformatic analysis. Lipid-related differentially expressed genes (DEGs) involved in AMI were identified using the GSE66360 dataset from the Gene Expression Omnibus (GEO) database and R software packages. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to analyze lipid-related DEGs. Lipid-related genes were identified by two machine learning techniques: least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE). The receiver operating characteristic (ROC) curves were used to descript diagnostic accuracy. Furthermore, blood samples were collected from AMI patients and healthy individuals, and real-time quantitative polymerase chain reaction (RT-qPCR) was used to determine the RNA levels of four lipid-related DEGs. Fifty lipid-related DEGs were identified, 28 upregulated and 22 downregulated. Several enrichment terms related to lipid metabolism were found by GO and KEGG enrichment analyses. After LASSO and SVM-RFE screening, four genes (ACSL1, CH25H, GPCPD1, and PLA2G12A) were identified as potential diagnostic biomarkers for AMI. Moreover, the RT-qPCR analysis indicated that the expression levels of four DEGs in AMI patients and healthy individuals were consistent with bioinformatics analysis results. The validation of clinical samples suggested that 4 lipid-related DEGs are expected to be diagnostic markers for AMI and provide new targets for lipid therapy of AMI.


Assuntos
Biologia Computacional , Infarto do Miocárdio , Humanos , Biomarcadores , Coenzima A Ligases/genética , Bases de Dados Factuais , Lipídeos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Fosfolipases , Fosfolipases A2 do Grupo I/metabolismo
19.
Aging (Albany NY) ; 15(5): 1371-1393, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36863715

RESUMO

The role of m6A in the regulation of the immune microenvironment in atrial fibrillation (AF) remains unclear. This study systematically evaluated the RNA modification patterns mediated by differential m6A regulators in 62 AF samples, identified the pattern of immune cell infiltration in AF and identified several immune-related genes associated with AF. A total of six key differential m6A regulators between healthy subjects and AF patients were identified by the random forest classifier. Three distinct RNA modification patterns (m6A cluster-A, -B and -C) among AF samples were identified based on the expression of 6 key m6A regulators. Differential infiltrating immune cells and HALLMARKS signaling pathways between normal and AF samples as well as among samples with three distinct m6A modification patterns were identified. A total of 16 overlapping key genes were identified by weighted gene coexpression network analysis (WGCNA) combined with two machine learning methods. The expression levels of the NCF2 and HCST genes were different between controls and AF patient samples as well as among samples with the distinct m6A modification patterns. RT-qPCR also proved that the expression of NCF2 and HCST was significantly increased in AF patients compared with control participants. These results suggested that m6A modification plays a key role in the complexity and diversity of the immune microenvironment of AF. Immunotyping of patients with AF will help to develop more accurate immunotherapy strategies for those with a significant immune response. The NCF2 and HCST genes may be novel biomarkers for the accurate diagnosis and immunotherapy of AF.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/genética , Metilação , RNA , Redes Reguladoras de Genes , Voluntários Saudáveis
20.
Nat Commun ; 14(1): 1245, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871075

RESUMO

The long-term response of the Atlantic meridional overturning circulation (AMOC) to anthropogenic forcing has been difficult to detect from the short direct measurements available due to strong interdecadal variability. Here, we present observational and modeling evidence for a likely accelerated weakening of the AMOC since the 1980s under the combined forcing of anthropogenic greenhouse gases and aerosols. This likely accelerated AMOC weakening signal can be detected in the AMOC fingerprint of salinity pileup remotely in the South Atlantic, but not in the classic warming hole fingerprint locally in the North Atlantic, because the latter is contaminated by the "noise" of interdecadal variability. Our optimal salinity fingerprint retains much of the signal of the long-term AMOC trend response to anthropogenic forcing, while dynamically filtering out shorter climate variability. Given the ongoing anthropogenic forcing, our study indicates a potential further acceleration of AMOC weakening with associated climate impacts in the coming decades.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...